Analytic Sensitivity and Uncertainty
Computations in Large-Scale Applications
via Automatic Differentiation

Eric Phipps

>
p Analytic Derivatives Enable Robust

Simulation and Design Capabilities

* We need analytic first & higher derivatives for predictive simulations
— Computational design, optimization and parameter estimation
— Stability analysis
— Uncertainty quantification
— Verification and validation

» Analytic derivatives improve robustness and efficiency
—Very hard to make finite differences accurate

A

What is Automatic Differentiation (AD)?

» Technique to compute analytic derivatives
without hand-coding the derivative
computation

» How does it work -- freshman calculus
— Computations are composition of
simple operations (+, *, sin(), etc...)
with known derivatives

— Derivatives computed line-by-line,
combined via chain rule

y =sin(e® + zlogz), = =2

d
T _
dx
dz
T <« 2 — 1 2.000 | 1.000
dz
- dt dr
t—e — — t— 7.389 | 7.389
dz dx
v loge M1 0.301 | 0.500
& dxz T dx) :
iz Iz dr 0.602 | 1.301
w v iz 7 dz 7.991 | 8.690
sin w @y cos(w) dw
— — — — -
(] dz dz 0.991 1.188

T~
. AD Takes Two Basic Forms
zeR" f:R" > R™ y=f(x) e R™

» Forward Mode:
— Propagate derivatives of intermediate variables w.r.t. independent variables forward
Oc Op Oa +6<,03b
Or; 0Oadxr; Obdx;
oy Of

= R"*P — =V
x=Vz, V € — 92— D

c=¢(a,b) =

— Change of variables

— Complexity

of

How is AD Implemented?

» Source transformation
— Preprocessor implements AD
— Very efficient derivative code
—Works well for FORTRAN, some C
— Extremely difficult for C++
— OpenAD, ADIFOR, ADIC (Argonne National Lab & Rice University)

» Operator overloading

Sandia Physics Simulation Codes

* Element-based Fluids Combustion

— Finite element, finite volume, finite
difference, network, etc...

» Large-scale
— Billions of unknowns

» Parallel
— MPI-based SPMD
— Distributed memory

Circuits
Structures

e C++
— Object oriented
— Some coupling to legacy Fortran libraries

» We need AD techniques that fit these
requirements

@ Sandia
National
Laboratories

'& \
Sacado: AD Tools for C++ Applications

» Package in Trilinos 8.0

- Implements several modes of AD = o
— Forward (Jacobians, Jacobian-vector products, ...)
— Reverse (Gradients, Jacobian-transpose-vector products, ...)

— Taylor (High-order univariate Taylor series)

Simple Sacado Example

/ The function to differentiate

double func(double a, double b, double c) {
double r = c*std::log(b+1.)/std::sin(a);

return r;
I
int main(int argc, char **argv) {
double a = std::atan(1.0); // pi/4
double b = 2.0;
double ¢ = 3.0;

// Compute function
double r = func(a, b, c);

Simple Sacado Example

#include "Sacado.hpp"

/ The function to differentiate

template <typename ScalarT>

ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {
ScalarT r = c*std::log(b+1.)/std::sin(a);

return r;
I
int main(int argc, char **argv) {
double a = std::atan(1.0); // pi/4
double b = 2.0;
double ¢ = 3.0;
int num_deriv = 2; // Number of independent variables

Sacado: :Fad: :DFad<double> afad(num_deriv, @, a); // First (@) indep. var
Sacado: :Fad: :DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
Sacado: :Fad: :DFad<double> cfad(c); // Passive variable

// Compute function
double r = func(a, b, c);

// Compute function and derivative with AD
Sacado: :Fad: :DFad<double> rfad = func(afad, bfad, cfad);

// Extract value and derivatives
double r_ad = rfad.val(Q); //r

double drda_ad rfad.dx(@); // dr/da
double drdb_ad rfad.dx(1); // dr/db

Differentiating Element-Based
Production Applications

» Global residual computation (ignoring boundary computations):

N
f(d:7m7tap) - ZQ;eki(Pia.::IDim:tvp)
=1

» Time-step Jacobian computation:

The Trilinos Project

http://trilinos.sandia.gov

Algorithms and enabling technologies

Large-scale scientific and engineering
applications

Object oriented framework

() sancia National Laboratories

The Trilinos Project

Home I I About I I Resources ” Packages | | Download

Welcome to the Trilinos

. The current release update is: 8.0.5
Project Home Page

Released: Thursday, January 31st, 2008

To view the changes associated with this
release update, see the ch

The Trilinos Project is an effort to
develop algorithms and enabling
technologies within an object-oriented
software framework for the solution of
large-scale, complex multi-physics
engineering and scientific problems. A

unique design feature of Trilinos is its Trilinos Rel 8.0 Now Available

focus on packages.
Trilinos Packages doy . In addition to many new features
across most packages, Trilinos Release 8.0

Each Trilinos package is a self- contains three packages that are being
contained, independent piece of released for the first time:
software with its own set of
requirements, its own development
- team and group of users. Because of
&. this, Trilinos itself is designed to respect
the autonomy of packages. Trilinos
offers a variety of ways for a particular
package to interact with other Trilinos
packages. It also offers a set of tools
that can assist package developers with
builds across multiple platforms,
generating documentation and
regression testing across a set of target
platforms. At the same time, what a
package must do to be called a Trilinos
package is minimal, and varies with
each package.

« Belos (next-g iterative solvers)
> (automatic differentiation)
o TrilinosCouplings (select Trilinos package

interfaces)

See the release notes for more information.

From here you can find out more about the Trilinos project, download Trilinos and its
packages, browse documentation, sign up for mail lists, file bug reports and feature requests,
and a variety of other things. Questions? Contact Mike Heroux

Trilinos User Group 2007

This year's Tri
Albuguergue.

0s User Group Meeting was held Nov 6-8 (Tuesday - Thursday) in

User presentations focused on the capabilities that were released as a part of Trilinos 8.0 in
August 2007, and the capabilities that are scheduled to be released as a part of Trilinos 9.0 in
September 2008. Slides for some of the presentations are now available at the above link.

Trilinos Packages

Objective

Package(s)

Discretizations

Meshing & Spatial Discretizations

phdMesh, Intrepid

Time Integration Rythmos

Methods Automatic Differentiation Sacado
Mortar Methods Moertel
Linear algebra objects Epetra, Jpetra, Tpetra
Abstract interfaces Thyra, Stratimikos, RTOp

Core Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, Star-P, ForTrilinos
C++ utilities, (some) I/0 Teuchos, EpetraExt, Kokkos, Triutils
Iterative (Krylov) linear solvers AztecOO, Belos, Komplex
Direct sparse linear solvers Amesos
Direct dense linear solvers Epetra, Teuchos, Pliris
Iterative eigenvalue solvers Anasazi

Solvers ILU-type preconditioners AztecOO, IFPACK
Multilevel preconditioners ML, CLAPS
Block preconditioners Meros
Nonlinear system solvers NOX, LOCA

Optimization (SAND)

MOOCHDO, Aristos

A

Integrating AD with Trilinos Solver

Capabilities

Nonlinear Solvers

Method implementation

Evaluate Jacobian

Loop over elements
gather element solution
initialize element AD types
evaluate templated element residual
extract derivative values

sum into global derivative matrix

end loop

\

Scalability of This Approach

Scalability of the element-level derivative computation

Set of N hypothetical chemical species:

o Jacobian Eval o Adjoint Eval
2X; = X; 1+ Xj41, 7=2,...,N—1 EGOO ——FD i§10
Steady-state mass transfer equations: || '© 400 —°-FAD 3 9
S 1.02 ul
u-VY; +V%; =w;, j=1,...,N—1 | £200 0.27 | 2 8
o 8 | RAD
o 0 o 7
o 0 100 200 300 400 @ 0 100 200 300 400

DOF Per Element DOF Per Element

N
> Yi=1
j=1

— Jacobian Eval - Adjoint Eval
Forward mode AD S 1000 S 59 :
v Faster than FD 3 +E2D 8 RAD
——
v Better scalability in number of PDEs 15} &58
i 500 155 TH
v Analytic Derivative © : © 57
= 0.94 =
Reverse mode AD S 0 S 56
o 0 100 200 300 400 @ 0 100 200 300 400

v Scalable adjoint/gradient

JT v (T f ()) DOF Per Element DOF Per Element
w = V(w T

DOF per element = 4*N

'
e ’
- - QASPR
QASPR QUACCATON ATERRATIVS 1051

Qualification of electronic devices in hostile environments

Stockpile BJT

Electric Potential

4.724e-01 -2.131e-01 4.6]—02 3.0—01 5.646e-01

- BIB (0,—)
Defect reactions 0
B, (+,0,-) B,O (+,0)
B No irradiation: Ig=-0.05 yA 1
Si interstitial (1) (+2,+1,0,-1,-2)
B.C ~ |
R Ci (+,0,-) §_
Annihilation :..; Experiment
¢ E '
S
=
o 4}
f VV (+1,0,-1,-2) 9
3]
Annihilation m -
V Defect annealing
VB (+,0) sl i
Vacancy (V) (+2,+1,0,-1,-2)

VP (0,-)

104 10° 102 107
Time (s)

VO (0,-)

Charon Drift-Diffusion Formulation
with Defects

on
Current a - V- Jn — _Rn("p) n,p, Y17 ceey YN)7 Jn — —nﬂnVT/) + Dnvn
Conservation for e-
and h+ ap
a +V-J, = _Rp(wa'nﬂp) Yq,... 7YN)7 Jp = —pupV’lﬁ - D,Vp
Y,

Defect Continuity 14V - Jy, = ~Ry,($,m,p, Vi, ..., Y), Sy, = iV — DiVY;

,'},.'

a0

Forward Sensitivity Analysis with Rythmos

* Discretized PDE system:

f(ii?,il?,p,t) =0

9(p,t) = g(2(t), z(t), p, 1)

» Forward sensitivity problem

of of of
9 (ap) oz (ap) T op "

9 9gdi 090z 0
A R R

Transient ODE/DAE
forward sensitivity solvers I

| Nonlinearsoiver |

Iterative nonlinear
solvers

Algebraic
preconditioners and
direct solvers

Linear algebra data
structures

* 9x0.1 micron pseudo-1D simulation

» 1384x1 quad cells, linear finite elements + SUPG
« 2 carriers + 1 potential + 36 defect species

* 108,030 unknowns on 32 processors

84 carrier-defect reactions

» 126 parameters for sensitivity analysis

« AD Jacobian, parameter deriv’s

» Base current provides observation function

Frenkel Pairs

x 10

Radiation Pulse

S

(%)

N

il

o]

[<2]

)

Base Current

N

(=]
\ T

Time (s)

Sandia
National
Laboratories

Transient Base Current Sensitivities

Scaled Sensitivities
time = 1.0e-03

© o9
M o
L]

Scaled Sensitivity
o

g
o

-0.2f
-0.41

10 20 30 40 50 60 70 80 90 100 110 120

time=1.0

© oo
M B o

-0.2
-0.4

Scaled Sensitivity
o

o
o

#

10 20 30 40 50 60 70 80 90 100 110 120

Parameter

Reaction Parameter

Value

,Scaled Sensitivities

-

L~

\

e
o

Scaled Sensitivity
[=]

1
o
2]

— Parameter 16
— Parameter 46

14 V™7 —e +V™
16 e +V0oV-
46 e~ + PV? — pV?Y

activation energy
cross-section

cross-section

0.09
2.40E-14
1.50E-15

Sensitivity

-5 — Parameter 16
——Parameter 46

-8 6 4 2
1

Comparison to Black-Box Finite Differences

1st-order Finite Difference Error

1e-3 intearation tolerance

* Run-times: i —te-i)
— Forward simulation: 105 min. mz's' e
— Direct sensitivities: 931 min. 5’1: es
—Black-box, first-order FD: ~13,000 min. | £ |

» Direct approach more efficient

10 10” 1072 107" 10
Time (s)

1e-5 integration tolerance

—14x speed-up

Correct Digits

Time (s)

Transient ODE/DAE
forward sensitivity solvers Z,_.

Algebraic
precenditioners and

Linear algebra data
structures

ot

Leveraging Template Infrastructure

 Application code templating allows easy incorporation of new AD
data types

—Second derivatives
« Sacado: :Fad: :DFad< Sacado: :Rad: :DFad<double> >

o ([0f
— =W |V
ox (3:1: 1) 2

Uncertainty Quantification

» Quantifying uncertainties critical for predictive simulation

* Aleatory or irreducible uncertainty: “inherent randomness”
—Probability distribution representations
—Monte Carlo sampling and its many variants (e.g., LHS)
—Stochastic collocation
—Polynomial chaos and generalized polynomial chaos

 Epistemic or reducible uncertainty: “lack of knowledge”
—Set/interval representations
—Interval arithmetic
—Possibility/evidence theory
—Probability boxes

* Aleatory uncertainty for parametric uncertainty Sandia

National
Laboratories

Stochastic Galerkin Methods

(For parametric uncertainty)

 Deterministic problem (possibly after spatial discretization):
Find u(p) such that F(u;p) =0,p € T C RM

» Stochastic problem:
Find (&) such that F(u;€) =0,£: Q2 — T

 Galerkin approximatLon:
a(€) = Y uthi(®) — | P(a(€);wi(€)du = 0
=0

» Most methods can be obtained by choice of approximating space
and basis (Gunzberger & Webster)

— Space of piecewise constant functions: Monte Carlo

— Space of complete polynomials of a given degree
Lagrange interpolation polynomial basis: Stochastic collocation
* Hermite polynomial basis: Polynomial chaos

» General orthogonal polynomial basis: Generalized polynomial
chaos
Sandia

» Choice of space/basis dictates structure of nonlinear problem National

Laboratories

SG Methods via AD

Fi(uo, . ., up) = /Q F(a(£); £)9:(E) dps = 0

» Galerkin residuals typically evaluated by quadrature
» Galerkin method can also be viewed as a projection

* |dea:
— Given computer code to evaluate deterministic F
— Compute projection operation by operation in evaluation of F, in an

Sy

>

Projections of Intermediate Operations

(f9) = [£©(©)du, {$}E, orthogonal

» Addition/subtraction
c=atb=c =a;Ltb;

» Multiplication
c=axb=) cih;= Z Z“*bﬂ"/’t"l’a e ZZ a:b, LIk (Yivhjvon)

(¥)

r

AD Polynomial Chaos for a Simple Function

u(€) = Po(§) + 0.491(§) + 0.0672(&) + 0.0023(&)

Probability Density Function

» Univariate Hermite basis s Tf /‘\\r
L 0.5}
 Gaussian random variable |~ 05 - , :
0

0.5 1 1.5 2 2.5
. 1 :
Degree.3, 5, 7PC — samping
expansion computed by —— AD PCE (3)
AD 8l—AD PCE (5)
—— AD PCE (7)

SG for Implicit Systems

* Propagating polynomials forward through code provides stochastic
residuals

Fi(uo, . -, up) = /Q F(a(€); €)9i(€)dp = 0

* For implicit systems, also need Jacobians
oF;, . .

Summary

» Templating key to AD approach
— Simple, fast Sacado AD tools
— Apply at “element” level

— Hooks for future program
transformation

* Vertical integration of Trilinos

technologies provide remarkable
capabilities

Transient ODE/DAE

Iterative nonlinear
solvers

Algebraic
preconditioners and
direct solvers

Linear algebra data

structures

forward sensitivity solvers | L |

| implicitBDFstepper | | ExpllenR;(suppor

| Nonlinearsoiver |

